Mitochondria mediate septin cage assembly to promote autophagy of Shigella
نویسندگان
چکیده
Septins, cytoskeletal proteins with well-characterised roles in cytokinesis, form cage-like structures around cytosolic Shigella flexneri and promote their targeting to autophagosomes. However, the processes underlying septin cage assembly, and whether they influence S. flexneri proliferation, remain to be established. Using single-cell analysis, we show that the septin cages inhibit S. flexneri proliferation. To study mechanisms of septin cage assembly, we used proteomics and found mitochondrial proteins associate with septins in S. flexneri-infected cells. Strikingly, mitochondria associated with S. flexneri promote septin assembly into cages that entrap bacteria for autophagy. We demonstrate that the cytosolic GTPase dynamin-related protein 1 (Drp1) interacts with septins to enhance mitochondrial fission. To avoid autophagy, actin-polymerising Shigella fragment mitochondria to escape from septin caging. Our results demonstrate a role for mitochondria in anti-Shigella autophagy and uncover a fundamental link between septin assembly and mitochondria.
منابع مشابه
Priming for destruction: septins at the crossroads of mitochondrial fission and bacterial autophagy.
Mitochondria are essential organelles for cell survival, programmed cell death, and autophagy. They undergo cycles of fission and fusion, which are subverted by infectious pathogens and altered in many human diseases. Mitochondrial fission is mediated by the dynamin-related protein Drp1, but the precise mechanism of its action is not well understood. In the last and current issues of EMBO Repor...
متن کاملUse of Shigella flexneri to Study Autophagy-Cytoskeleton Interactions
Shigella flexneri is an intracellular pathogen that can escape from phagosomes to reach the cytosol, and polymerize the host actin cytoskeleton to promote its motility and dissemination. New work has shown that proteins involved in actin-based motility are also linked to autophagy, an intracellular degradation process crucial for cell autonomous immunity. Strikingly, host cells may prevent acti...
متن کاملSeptins and Bacterial Infection
Septins, a unique cytoskeletal component associated with cellular membranes, are increasingly recognized as having important roles in host defense against bacterial infection. A role for septins during invasion of Listeria monocytogenes into host cells was first proposed in 2002. Since then, work has shown that septins assemble in response to a wide variety of invasive bacterial pathogens, and ...
متن کاملThe Zebrafish as a New Model for the In Vivo Study of Shigella flexneri Interaction with Phagocytes and Bacterial Autophagy
Autophagy, an ancient and highly conserved intracellular degradation process, is viewed as a critical component of innate immunity because of its ability to deliver cytosolic bacteria to the lysosome. However, the role of bacterial autophagy in vivo remains poorly understood. The zebrafish (Danio rerio) has emerged as a vertebrate model for the study of infections because it is optically access...
متن کاملHigher-Order Septin Assembly Is Driven by GTP-Promoted Conformational Changes: Evidence From Unbiased Mutational Analysis in Saccharomyces cerevisiae
Septin proteins bind GTP and heterooligomerize into filaments with conserved functions across a wide range of eukaryotes. Most septins hydrolyze GTP, altering the oligomerization interfaces; yet mutations designed to abolish nucleotide binding or hydrolysis by yeast septins perturb function only at high temperatures. Here, we apply an unbiased mutational approach to this problem. Mutations caus...
متن کامل